
Porting Python 2 Code to Python 3
Release 2.7.2

Guido van Rossum
Fred L. Drake, Jr., editor

February 23, 2012

Python Software Foundation
Email: docs@python.org

Contents

1 Choosing a Strategy ii
1.1 Universal Bits of Advice . ii

2 Python 3 and 3to2 iii

3 Python 2 and 2to3 iii
3.1 Support Python 2.7 . iv
3.2 Try to Support Python 2.6 and Newer Only . iv

from __future__ import print_function . iv
from __future__ import unicode_literals . iv
Bytes literals . iv

3.3 Supporting Python 2.5 and Newer Only . iv
from __future__ import absolute_import . v

3.4 Handle Common “Gotchas” . v
from __future__ import division . v
Specify when opening a file as binary . v
Text files . v
Subclass object . v
Deal With the Bytes/String Dichotomy . vi
Indexing bytes objects . vii
__str__()/__unicode__() . vii
Don’t Index on Exceptions . viii
Don’t use __getslice__ & Friends . viii
Updating doctests . viii

3.5 Eliminate -3 Warnings . viii
3.6 Run 2to3 . viii

Manually . viii
During Installation . ix

3.7 Verify & Test . ix

4 Python 2/3 Compatible Source ix
4.1 Follow The Steps for Using 2to3 . ix
4.2 Use six . x

4.3 Capturing the Currently Raised Exception . x

5 Other Resources xi

author Brett Cannon

Abstract

With Python 3 being the future of Python while Python 2 is still in active use, it is good to have your project
available for both major releases of Python. This guide is meant to help you choose which strategy works best
for your project to support both Python 2 & 3 along with how to execute that strategy.
If you are looking to port an extension module instead of pure Python code, please see cporting-howto.

1 Choosing a Strategy

When a project makes the decision that it’s time to support both Python 2 & 3, a decision needs to be made as to how
to go about accomplishing that goal. The chosen strategy will depend on how large the project’s existing codebase is
and how much divergence you want from your Python 2 codebase from your Python 3 one (e.g., starting a new version
with Python 3).

If your project is brand-new or does not have a large codebase, then you may want to consider writing/porting all of
your code for Python 3 and use 3to2 to port your code for Python 2.

If you would prefer to maintain a codebase which is semantically and syntactically compatible with Python 2 & 3
simultaneously, you can write Python 2/3 Compatible Source. While this tends to lead to somewhat non-idiomatic
code, it does mean you keep a rapid development process for you, the developer.

Finally, you do have the option of using 2to3 to translate Python 2 code into Python 3 code (with some manual help).
This can take the form of branching your code and using 2to3 to start a Python 3 branch. You can also have users
perform the translation as installation time automatically so that you only have to maintain a Python 2 codebase.

Regardless of which approach you choose, porting is not as hard or time-consuming as you might initially think. You
can also tackle the problem piece-meal as a good portion of porting is simply updating your code to follow current
best practices in a Python 2/3 compatible way.

1.1 Universal Bits of Advice

Regardless of what strategy you pick, there are a few things you should consider.

One is make sure you have a robust test suite. You need to make sure everything continues to work, just like when
you support a new minor version of Python. This means making sure your test suite is thorough and is ported properly
between Python 2 & 3. You will also most likely want to use something like tox to automate testing between both a
Python 2 and Python 3 VM.

Two, once your project has Python 3 support, make sure to add the proper classifier on the Cheeseshop
(PyPI). To have your project listed as Python 3 compatible it must have the Python 3 classifier (from
http://techspot.zzzeek.org/2011/01/24/zzzeek-s-guide-to-python-3-porting/):

setup(
name=’Your Library’,
version=’1.0’,

http://codespeak.net/tox/
http://pypi.python.org/
http://pypi.python.org/
http://pypi.python.org/pypi?:action=browse&c=533
http://techspot.zzzeek.org/2011/01/24/zzzeek-s-guide-to-python-3-porting/

classifiers=[
make sure to use :: Python *and* :: Python :: 3 so
that pypi can list the package on the python 3 page
’Programming Language :: Python’,
’Programming Language :: Python :: 3’

],
packages=[’yourlibrary’],
make sure to add custom_fixers to the MANIFEST.in
include_package_data=True,
...

)

Doing so will cause your project to show up in the Python 3 packages list. You will know you set the classifier properly
as visiting your project page on the Cheeseshop will show a Python 3 logo in the upper-left corner of the page.

Three, the six project provides a library which helps iron out differences between Python 2 & 3. If you find there
is a sticky point that is a continual point of contention in your translation or maintenance of code, consider using a
source-compatible solution relying on six. If you have to create your own Python 2/3 compatible solution, you can use
sys.version_info[0] >= 3 as a guard.

Four, read all the approaches. Just because some bit of advice applies to one approach more than another doesn’t mean
that some advice doesn’t apply to other strategies.

Five, drop support for older Python versions if possible. Python 2.5 introduced a lot of useful syntax and libraries
which have become idiomatic in Python 3. Python 2.6 introduced future statements which makes compatibility much
easier if you are going from Python 2 to 3. Python 2.7 continues the trend in the stdlib. So choose the newest version
of Python which you believe can be your minimum support version and work from there.

2 Python 3 and 3to2

If you are starting a new project or your codebase is small enough, you may want to consider writing your code for
Python 3 and backporting to Python 2 using 3to2. Thanks to Python 3 being more strict about things than Python 2
(e.g., bytes vs. strings), the source translation can be easier and more straightforward than from Python 2 to 3. Plus
it gives you more direct experience developing in Python 3 which, since it is the future of Python, is a good thing
long-term.

A drawback of this approach is that 3to2 is a third-party project. This means that the Python core developers (and thus
this guide) can make no promises about how well 3to2 works at any time. There is nothing to suggest, though, that
3to2 is not a high-quality project.

3 Python 2 and 2to3

Included with Python since 2.6, the 2to3 tool (and lib2to3 module) helps with porting Python 2 to Python 3 by
performing various source translations. This is a perfect solution for projects which wish to branch their Python 3
code from their Python 2 codebase and maintain them as independent codebases. You can even begin preparing to use
this approach today by writing future-compatible Python code which works cleanly in Python 2 in conjunction with
2to3; all steps outlined below will work with Python 2 code up to the point when the actual use of 2to3 occurs.

Use of 2to3 as an on-demand translation step at install time is also possible, preventing the need to maintain a sep-
arate Python 3 codebase, but this approach does come with some drawbacks. While users will only have to pay the
translation cost once at installation, you as a developer will need to pay the cost regularly during development. If
your codebase is sufficiently large enough then the translation step ends up acting like a compilation step, robbing
you of the rapid development process you are used to with Python. Obviously the time required to translate a project

http://pypi.python.org/pypi?:action=browse&c=533&show=all
http://packages.python.org/six
http://www.python.org/2.5.x
http://www.python.org/2.6.x
http://www.python.org/2.7.x
https://bitbucket.org/amentajo/lib3to2/overview
http://docs.python.org/py3k/library/2to3.html

will vary, so do an experimental translation just to see how long it takes to evaluate whether you prefer this approach
compared to using Python 2/3 Compatible Source or simply keeping a separate Python 3 codebase.

Below are the typical steps taken by a project which uses a 2to3-based approach to supporting Python 2 & 3.

3.1 Support Python 2.7

As a first step, make sure that your project is compatible with Python 2.7. This is just good to do as Python 2.7 is the
last release of Python 2 and thus will be used for a rather long time. It also allows for use of the -3 flag to Python to
help discover places in your code which 2to3 cannot handle but are known to cause issues.

3.2 Try to Support Python 2.6 and Newer Only

While not possible for all projects, if you can support Python 2.6 and newer only, your life will be much easier. Various
future statements, stdlib additions, etc. exist only in Python 2.6 and later which greatly assist in porting to Python 3.
But if you project must keep support for Python 2.5 (or even Python 2.4) then it is still possible to port to Python 3.

Below are the benefits you gain if you only have to support Python 2.6 and newer. Some of these options are personal
choice while others are strongly recommended (the ones that are more for personal choice are labeled as such). If you
continue to support older versions of Python then you at least need to watch out for situations that these solutions fix.

from __future__ import print_function

This is a personal choice. 2to3 handles the translation from the print statement to the print function rather well so this is
an optional step. This future statement does help, though, with getting used to typing print(’Hello, World’)
instead of print ’Hello, World’.

from __future__ import unicode_literals

Another personal choice. You can always mark what you want to be a (unicode) string with a u prefix to get the same
effect. But regardless of whether you use this future statement or not, you must make sure you know exactly which
Python 2 strings you want to be bytes, and which are to be strings. This means you should, at minimum mark all
strings that are meant to be text strings with a u prefix if you do not use this future statement.

Bytes literals

This is a very important one. The ability to prefix Python 2 strings that are meant to contain bytes with a b prefix help
to very clearly delineate what is and is not a Python 3 string. When you run 2to3 on code, all Python 2 strings become
Python 3 strings unless they are prefixed with b.

There are some differences between byte literals in Python 2 and those in Python 3 thanks to the bytes type just being
an alias to str in Python 2. Probably the biggest “gotcha” is that indexing results in different values. In Python 2, the
value of b’py’[1] is ’y’, while in Python 3 it’s 121. You can avoid this disparity by always slicing at the size of
a single element: b’py’[1:2] is ’y’ in Python 2 and b’y’ in Python 3 (i.e., close enough).

You cannot concatenate bytes and strings in Python 3. But since in Python 2 has bytes aliased to str, it will succeed:
b’a’ + u’b’ works in Python 2, but b’a’ + ’b’ in Python 3 is a TypeError. A similar issue also comes
about when doing comparisons between bytes and strings.

3.3 Supporting Python 2.5 and Newer Only

If you are supporting Python 2.5 and newer there are still some features of Python that you can utilize.

http://www.python.org/2.7.x
http://www.python.org/2.6.x
http://www.python.org/2.5.x
http://www.python.org/2.4.x
http://www.python.org/2.5.x

from __future__ import absolute_import

Implicit relative imports (e.g., importing spam.bacon from within spam.eggs with the statement import
bacon) does not work in Python 3. This future statement moves away from that and allows the use of explicit
relative imports (e.g., from . import bacon).

In Python 2.5 you must use the __future__ statement to get to use explicit relative imports and prevent implicit ones.
In Python 2.6 explicit relative imports are available without the statement, but you still want the __future__ statement
to prevent implicit relative imports. In Python 2.7 the __future__ statement is not needed. In other words, unless you
are only supporting Python 2.7 or a version earlier than Python 2.5, use the __future__ statement.

3.4 Handle Common “Gotchas”

There are a few things that just consistently come up as sticking points for people which 2to3 cannot handle automat-
ically or can easily be done in Python 2 to help modernize your code.

from __future__ import division

While the exact same outcome can be had by using the -Qnew argument to Python, using this future statement lifts
the requirement that your users use the flag to get the expected behavior of division in Python 3 (e.g., 1/2 == 0.5;
1//2 == 0).

Specify when opening a file as binary

Unless you have been working on Windows, there is a chance you have not always bothered to add the b mode when
opening a binary file (e.g., rb for binary reading). Under Python 3, binary files and text files are clearly distinct and
mutually incompatible; see the io module for details. Therefore, you must make a decision of whether a file will be
used for binary access (allowing to read and/or write bytes data) or text access (allowing to read and/or write unicode
data).

Text files

Text files created using open() under Python 2 return byte strings, while under Python 3 they return unicode strings.
Depending on your porting strategy, this can be an issue.

If you want text files to return unicode strings in Python 2, you have two possibilities:

• Under Python 2.6 and higher, use io.open(). Since io.open() is essentially the same function in both
Python 2 and Python 3, it will help iron out any issues that might arise.

• If pre-2.6 compatibility is needed, then you should use codecs.open() instead. This will make sure that you
get back unicode strings in Python 2.

Subclass object

New-style classes have been around since Python 2.2. You need to make sure you are subclassing from object to
avoid odd edge cases involving method resolution order, etc. This continues to be totally valid in Python 3 (although
unneeded as all classes implicitly inherit from object).

http://www.python.org/2.5.x
http://www.python.org/2.6.x
http://www.python.org/2.7.x
http://www.python.org/2.2.x

Deal With the Bytes/String Dichotomy

One of the biggest issues people have when porting code to Python 3 is handling the bytes/string dichotomy. Because
Python 2 allowed the str type to hold textual data, people have over the years been rather loose in their delineation of
what str instances held text compared to bytes. In Python 3 you cannot be so care-free anymore and need to properly
handle the difference. The key handling this issue to make sure that every string literal in your Python 2 code is either
syntactically of functionally marked as either bytes or text data. After this is done you then need to make sure your
APIs are designed to either handle a specific type or made to be properly polymorphic.

Mark Up Python 2 String Literals

First thing you must do is designate every single string literal in Python 2 as either textual or bytes data. If you are
only supporting Python 2.6 or newer, this can be accomplished by marking bytes literals with a b prefix and then
designating textual data with a u prefix or using the unicode_literals future statement.

If your project supports versions of Python pre-dating 2.6, then you should use the six project and its b() function to
denote bytes literals. For text literals you can either use six’s u() function or use a u prefix.

Decide what APIs Will Accept

In Python 2 it was very easy to accidentally create an API that accepted both bytes and textual data. But in Python 3,
thanks to the more strict handling of disparate types, this loose usage of bytes and text together tends to fail.

Take the dict {b’a’: ’bytes’, u’a’: ’text’} in Python 2.6. It creates the dict {u’a’: ’text’}
since b’a’ == u’a’. But in Python 3 the equivalent dict creates {b’a’: ’bytes’, ’a’: ’text’}, i.e.,
no lost data. Similar issues can crop up when transitioning Python 2 code to Python 3.

This means you need to choose what an API is going to accept and create and consistently stick to that API in both
Python 2 and 3.

Bytes / Unicode Comparison

In Python 3, mixing bytes and unicode is forbidden in most situations; it will raise a TypeError where Python 2
would have attempted an implicit coercion between types. However, there is one case where it doesn’t and it can be
very misleading:

>>> b"" == ""
False

This is because an equality comparison is required by the language to always succeed (and return False for incom-
patible types). However, this also means that code incorrectly ported to Python 3 can display buggy behaviour if such
comparisons are silently executed. To detect such situations, Python 3 has a -b flag that will display a warning:

$ python3 -b
>>> b"" == ""
__main__:1: BytesWarning: Comparison between bytes and string
False

To turn the warning into an exception, use the -bb flag instead:

$ python3 -bb
>>> b"" == ""
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
BytesWarning: Comparison between bytes and string

http://packages.python.org/six

Indexing bytes objects

Another potentially surprising change is the indexing behaviour of bytes objects in Python 3:

>>> b"xyz"[0]
120

Indeed, Python 3 bytes objects (as well as bytearray objects) are sequences of integers. But code converted from
Python 2 will often assume that indexing a bytestring produces another bytestring, not an integer. To reconcile both
behaviours, use slicing:

>>> b"xyz"[0:1]
b’x’
>>> n = 1
>>> b"xyz"[n:n+1]
b’y’

The only remaining gotcha is that an out-of-bounds slice returns an empty bytes object instead of raising
IndexError:

>>> b"xyz"[3]
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
IndexError: index out of range
>>> b"xyz"[3:4]
b’’

__str__()/__unicode__()

In Python 2, objects can specify both a string and unicode representation of themselves. In Python 3,
though, there is only a string representation. This becomes an issue as people can inadvertently do things in
their __str__() methods which have unpredictable results (e.g., infinite recursion if you happen to use the
unicode(self).encode(’utf8’) idiom as the body of your __str__() method).

There are two ways to solve this issue. One is to use a custom 2to3 fixer. The blog post at
http://lucumr.pocoo.org/2011/1/22/forwards-compatible-python/ specifies how to do this. That will allow 2to3 to
change all instances of def __unicode(self): ... to def __str__(self): This does require
you define your __str__() method in Python 2 before your __unicode__() method.

The other option is to use a mixin class. This allows you to only define a __unicode__() method for your class
and let the mixin derive __str__() for you (code from http://lucumr.pocoo.org/2011/1/22/forwards-compatible-
python/):

import sys

class UnicodeMixin(object):

"""Mixin class to handle defining the proper __str__/__unicode__
methods in Python 2 or 3."""

if sys.version_info[0] >= 3: # Python 3
def __str__(self):

return self.__unicode__()
else: # Python 2

def __str__(self):
return self.__unicode__().encode(’utf8’)

http://lucumr.pocoo.org/2011/1/22/forwards-compatible-python/
http://lucumr.pocoo.org/2011/1/22/forwards-compatible-python/
http://lucumr.pocoo.org/2011/1/22/forwards-compatible-python/

class Spam(UnicodeMixin):

def __unicode__(self):
return u’spam-spam-bacon-spam’ # 2to3 will remove the ’u’ prefix

Don’t Index on Exceptions

In Python 2, the following worked:

>>> exc = Exception(1, 2, 3)
>>> exc.args[1]
2
>>> exc[1] # Python 2 only!
2

But in Python 3, indexing directly on an exception is an error. You need to make sure to only index on the
BaseException.args attribute which is a sequence containing all arguments passed to the __init__()
method.

Even better is to use the documented attributes the exception provides.

Don’t use __getslice__ & Friends

Been deprecated for a while, but Python 3 finally drops support for __getslice__(), etc. Move completely over
to __getitem__() and friends.

Updating doctests

2to3 will attempt to generate fixes for doctests that it comes across. It’s not perfect, though. If you wrote a monolithic
set of doctests (e.g., a single docstring containing all of your doctests), you should at least consider breaking the
doctests up into smaller pieces to make it more manageable to fix. Otherwise it might very well be worth your time
and effort to port your tests to unittest.

3.5 Eliminate -3 Warnings

When you run your application’s test suite, run it using the -3 flag passed to Python. This will cause various warn-
ings to be raised during execution about things that 2to3 cannot handle automatically (e.g., modules that have been
removed). Try to eliminate those warnings to make your code even more portable to Python 3.

3.6 Run 2to3

Once you have made your Python 2 code future-compatible with Python 3, it’s time to use 2to3 to actually port your
code.

Manually

To manually convert source code using 2to3, you use the 2to3 script that is installed with Python 2.6 and later.:

2to3 <directory or file to convert>

http://docs.python.org/py3k/library/2to3.html
http://docs.python.org/py3k/library/2to3.html
http://docs.python.org/py3k/library/2to3.html

This will cause 2to3 to write out a diff with all of the fixers applied for the converted source code. If you would like
2to3 to go ahead and apply the changes you can pass it the -w flag:

2to3 -w <stuff to convert>

There are other flags available to control exactly which fixers are applied, etc.

During Installation

When a user installs your project for Python 3, you can have either distutils or Distribute run 2to3 on your behalf.
For distutils, use the following idiom:

try: # Python 3
from distutils.command.build_py import build_py_2to3 as build_py

except ImportError: # Python 2
from distutils.command.build_py import build_py

setup(cmdclass = {’build_py’: build_py},
...

)

For Distribute:

setup(use_2to3=True,
...

)

This will allow you to not have to distribute a separate Python 3 version of your project. It does require, though, that
when you perform development that you at least build your project and use the built Python 3 source for testing.

3.7 Verify & Test

At this point you should (hopefully) have your project converted in such a way that it works in Python 3. Verify it by
running your unit tests and making sure nothing has gone awry. If you miss something then figure out how to fix it in
Python 3, backport to your Python 2 code, and run your code through 2to3 again to verify the fix transforms properly.

4 Python 2/3 Compatible Source

While it may seem counter-intuitive, you can write Python code which is source-compatible between Python 2 & 3.
It does lead to code that is not entirely idiomatic Python (e.g., having to extract the currently raised exception from
sys.exc_info()[1]), but it can be run under Python 2 and Python 3 without using 2to3 as a translation step
(although the tool should be used to help find potential portability problems). This allows you to continue to have
a rapid development process regardless of whether you are developing under Python 2 or Python 3. Whether this
approach or using Python 2 and 2to3 works best for you will be a per-project decision.

To get a complete idea of what issues you will need to deal with, see the What’s New in Python 3.0. Others have
reorganized the data in other formats such as http://docs.pythonsprints.com/python3_porting/py-porting.html .

The following are some steps to take to try to support both Python 2 & 3 from the same source code.

4.1 Follow The Steps for Using 2to3

All of the steps outlined in how to port Python 2 code with 2to3 apply to creating a Python 2/3 codebase. This includes
trying only support Python 2.6 or newer (the __future__ statements work in Python 3 without issue), eliminating

http://packages.python.org/distribute/
http://docs.python.org/py3k/library/2to3.html
http://docs.python.org/py3k/library/2to3.html
http://docs.python.org/release/3.0/whatsnew/3.0.html
http://docs.pythonsprints.com/python3_porting/py-porting.html

warnings that are triggered by -3, etc.

You should even consider running 2to3 over your code (without committing the changes). This will let you know
where potential pain points are within your code so that you can fix them properly before they become an issue.

4.2 Use six

The six project contains many things to help you write portable Python code. You should make sure to read its
documentation from beginning to end and use any and all features it provides. That way you will minimize any
mistakes you might make in writing cross-version code.

4.3 Capturing the Currently Raised Exception

One change between Python 2 and 3 that will require changing how you code (if you support Python 2.5 and earlier)
is accessing the currently raised exception. In Python 2.5 and earlier the syntax to access the current exception is:

try:
raise Exception()

except Exception, exc:
Current exception is ’exc’
pass

This syntax changed in Python 3 (and backported to Python 2.6 and later) to:

try:
raise Exception()

except Exception as exc:
Current exception is ’exc’
In Python 3, ’exc’ is restricted to the block; Python 2.6 will "leak"
pass

Because of this syntax change you must change to capturing the current exception to:

try:
raise Exception()

except Exception:
import sys
exc = sys.exc_info()[1]
Current exception is ’exc’
pass

You can get more information about the raised exception from sys.exc_info() than simply the current exception
instance, but you most likely don’t need it.

Note: In Python 3, the traceback is attached to the exception instance through the __traceback__ attribute. If the
instance is saved in a local variable that persists outside of the except block, the traceback will create a reference
cycle with the current frame and its dictionary of local variables. This will delay reclaiming dead resources until the
next cyclic garbage collection pass.

In Python 2, this problem only occurs if you save the traceback itself (e.g. the third element of the tuple returned by
sys.exc_info()) in a variable.

http://docs.python.org/py3k/library/2to3.html
http://packages.python.org/six
http://www.python.org/2.5.x
http://www.python.org/2.6.x

5 Other Resources

The authors of the following blog posts, wiki pages, and books deserve special thanks for making public their tips for
porting Python 2 code to Python 3 (and thus helping provide information for this document):

• http://python3porting.com/

• http://docs.pythonsprints.com/python3_porting/py-porting.html

• http://techspot.zzzeek.org/2011/01/24/zzzeek-s-guide-to-python-3-porting/

• http://dabeaz.blogspot.com/2011/01/porting-py65-and-my-superboard-to.html

• http://lucumr.pocoo.org/2011/1/22/forwards-compatible-python/

• http://lucumr.pocoo.org/2010/2/11/porting-to-python-3-a-guide/

• http://wiki.python.org/moin/PortingPythonToPy3k

If you feel there is something missing from this document that should be added, please email the python-porting
mailing list.

http://python3porting.com/
http://docs.pythonsprints.com/python3_porting/py-porting.html
http://techspot.zzzeek.org/2011/01/24/zzzeek-s-guide-to-python-3-porting/
http://dabeaz.blogspot.com/2011/01/porting-py65-and-my-superboard-to.html
http://lucumr.pocoo.org/2011/1/22/forwards-compatible-python/
http://lucumr.pocoo.org/2010/2/11/porting-to-python-3-a-guide/
http://wiki.python.org/moin/PortingPythonToPy3k
http://mail.python.org/mailman/listinfo/python-porting

	Choosing a Strategy
	Universal Bits of Advice

	Python 3 and 3to2
	Python 2 and 2to3
	Support Python 2.7
	Try to Support Python 2.6 and Newer Only
	from __future__ import print_function
	from __future__ import unicode_literals
	Bytes literals

	Supporting Python 2.5 and Newer Only
	from __future__ import absolute_import

	Handle Common ``Gotchas''
	from __future__ import division
	Specify when opening a file as binary
	Text files
	Subclass object
	Deal With the Bytes/String Dichotomy
	Indexing bytes objects
	__str__()/__unicode__()
	Don't Index on Exceptions
	Don't use __getslice__ & Friends
	Updating doctests

	Eliminate -3 Warnings
	Run 2to3
	Manually
	During Installation

	Verify & Test

	Python 2/3 Compatible Source
	Follow The Steps for Using 2to3
	Use six
	Capturing the Currently Raised Exception

	Other Resources

